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Abstract

Speech Anonymization (SA) has arisen as a key domain of interest within the audio
privacy world, as the proliferation of voice assistants like Alexa and Siri poses
an increased risk of compromising the privacy of everyday users. SA itself, as an
offshoot of traditional speech-to-text, poses the difficult problem of protecting user
privacy while simultaneously maintaining standard speech-to-text ability. Despite
recent interest from the machine learning community, the current state-of-the-art
SA systems are language-specific and rely on anonymization methods that could be
exploited by malicious actors. In order to combat these issues, we propose a series
of ablations that a) leverage a Generative Adversarial Network (GAN) [Goodfellow
et al., 2014] to learn a distribution over language-agnostic speaker embeddings
and b) use a modified loss to bias the generative model towards an anonymized
distribution. We find that though our method displays subpar anonymization
compared to standard baselines, our model outperforms other language-agnostic
methods for anonymization and achieves SOTA performance in speech recognition.
Our code is available at https://github.com/aabroukh/anonima-voce.

1 Introduction

Problem Definition. Speech anonymization (SA), which refers to the task of removing the iden-
tifiable user characteristics of an audio input while preserving semantic and prosodic information,
has seen much attention in the past few years. Despite the recent advances and entire challenges
dedicated to this problem [Tomashenko et al., 2020, 2022], multiple issues have arisen endemic to the
field. Namely, there is tradeoff between performance and generality, as the best performing systems
require careful tuning and are language-specific. Additionally, no attention has been paid to learning
an anonymization mapping directly, as researchers instead rely upon simple (and often deterministic)
operations to anonymize the speaker embedding. Thus, our goal in this project is to leverage the
recent advances in deep generative models to create a SA system that is language-agnostic and
directly learns the anonymization transformation, thereby creating a general-purpose and robust SA
system.

Problem Significance. As work in the Internet-of-Things (IoT) domain encroaches into people’s
everyday lives, there is a groing concern over the privacy issues that such IoT systems may create
[Jin et al., 2022]. Namely, as voice assistants become more prevalent and voice recognition models
improve, there is a need for audio data to be anonymized as early in the data pipeline as possible.
Working towards a generalizable solution agnostic of language could help address this issue, as IoT
companies across the world would be able to standardize audio privacy practice with such a system
[Miao et al., 2022]. Additionally, working towards a generative anonymization system reduces the
attack risk of such deployed systems, as current SA systems can be quickly compromised if their
pool of speaker data is ever leaked.
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Technical Challenge. With regards to data gathering, we anticipate issues may arise from attempt-
ing to collect and clean a wide-array of different audio-based datasets. For the engineering and design
aspects, our proposed solutions may require clever fine-tuning of both training hyperparameters
and overall model architecture, and to make sure that training such models is tractable within the
current time frame of the project. For evaluation, running speaker verification and speech recognition
on the main benchmarks is an incredibly resource intensive task, requiring constant processing of
high-dimensional audio data.

State-of-the-Art. The current state-of-the-art SA systems primarily come from the VoicePrivacy
2020 [Tomashenko et al., 2020] and 2022 [Tomashenko et al., 2022] challenges. Meyer et al.
[2022] currently offers the best performance for deep SA frameworks, and uses a Wasserstein GAN
to extract speaker-identification features from the audio, achieving nearly perfect anonymization
on VoicePrivacy benchmarks. However, Meyer et al. [2022] specifically does not preserve pitch
information in its conversion, which may severely limit its effectiveness on tonal languages like
Mandarin Chinese. Khamsehashari et al. [2022] and Yao et al. [2022] both also provide SA systems
that achieve good results on the english benchmarks, but are language-specific and propose relatively
simple anonymization methods (by using a random speaker embedding from some pool of speakers
or using an average speaker embedding respectively).

To our knowledge, Miao et al. [2022] represents the state-of-the-art for general purpose language-
agnostic SA. However, the accuracy and privacy performance of their proposed method falls far short
of the language-specific methods [Meyer et al., 2022, Khamsehashari et al., 2022, Yao et al., 2022].
As a whole, there is a clear tradeoff between flexibility and performance among state-of-the-art
systems, and additionally a still present reliance on the “pool of speakers" approach to anonymization,
which if compromised could seriously damage the efficacy of the SA system.

Contributions.

• We adapt current work for language-agnostic voice anonymization with the current SOTA
anonymization methods in English to propose a novel SA architecture that is langauge-
agnostic yet incorporates a more sophisticated anonymization process.

• We propose a novel method to optimize voice anonymization systems end-to-end such that
the anonymization method itself is optimized by the internal DGM (GAN) by minimizing
similarity between same-speaker embeddings.

• We show that though both of the above systems perform below SOTA in terms of anonymiza-
tion performance, our methods outperform the SOTA language-agnostic baselines, and
additionally find the emergent property that GAN-based speaker anonymization systems
work remarkably well at speech enhancement (i.e. improving speech-to-text recognition),
achieving SOTA speech recognition performance compared to other anonymization systems.

2 Related Work

VoicePrivacy Baselines Tomashenko et al. [2020, 2022] Put forth a large-scale competition at
INTERSPEECH, with the goal of encouraging research in speaker anonymization work and providing
a cohesive set of standard datasets and evaluation metrics. Namely, they focus on two main baselines,
to which submitted methods should improve upon. In Baseline 1 (shown in Figure 1), the authors
first extract frequency information, bottleneck features, and speaker identity “x-vectors" from the
original audio. To anonymize the speech, the current x-vector is replace with some other, dissimilar
x-vector drawn from a pool of other users. This anonymized vector is then used, along with the other
features, to generate mel-spectrogram features and recover the now anonymous audio. Baseline 2
inherits from the signal processing (rather than machine learning) literature, and simply uses the
McAdams coefficient method [McAdams, 1984, Patino et al., 2020] to anonymize the speech. In
general, baseline 1 outperforms baseline 2 across all benchmarks.

Phonetic transcriptions and anonymized speaker embeddings Meyer et al. Meyer et al. [2022]
utilizes GANs to reduce the utility-privacy trade-off voice anonymization techniques. This is achieved
by reducing audio to phonetic transcriptions, generating a nonexistent voice using GANs, and
generate an anonymous utterance of the original based off the transcription, anonymous speaker
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embedding, and estimated pitch. Their pipeline is made up of 4 models. A speech recognition
model, speaker embedding extractor, anonymization module, and a text to speech system. The speech
recognition model is based on a hybrid connectionist temporal classification-attention architecture
with a conformer as encoder and transformer decoder. This model outputs phone sequences instead
of text. The speaker embedding extraction module uses x-vector and ECAPA-TDNN embeddings to
extract speaker identity. The speaker embedding anonymization module trains a Wasserstein GAN.
The speech synthesis module uses an encoder and decoder built from the conformer architecture. The
inputs are transformed into articulatory feature vectors for synthesis. It has also been trained on the
same speech concatenated speaker embedding setup as the anonymization module. This pipeline
performs better than the baselines of the VoicePrivacy2022 challenge for all metrics except pitch
correlation.

Language agnostic self-supervised learning Miao et al. Miao et al. [2022] utilizes semi-supervised
learning to overcome problems of complexity, multiple language applications, and poor performance.
Soft content representations are used to overcome mispronuncations in the anonymized speech.
Miao also uses ECAPA-TDNN for speaker encoding. The semi-supervised model earns universal
representations through unlabeled data which increases its application for languages other than
English. The architecture includes two pretrained and fixed encoders: one HuBERT based soft
encoder, ECAPA-TDNN encoder, one F0 extractor, and HiFi GAN neural vocoder decoder. The
HuBERT based soft content encoder is used to capture soft features by predicting a distribution over
discrete speech units. By training in a Self-Supervised fashion, this avoids the usage of specific
phoneme extractors and thus allows the ASR system to be language-agnostic. The ECAPA-TDNN
is the current SOTA method for speaker identity extraction. Miao et al. [2022] tests their method
on English and Mandarin datasets, thus displaying the adaptability of their method on very distinct
languages.

3 Methodology

Problem Setting. Our project centers around the problem setting of voice anonymization, wherein
the goal is to preserve the semantic content of audio data while removing characteristics that could
compromise the identity of the speakers. The pipeline for this task divides into three main sections:
extracting import features from the original audio data, performing anonymization on the extracted
features, and finally reconstituting the anonymized extracted features into anonymized speech with a
Text-to-Speech (TTS)-like model.

As an example, in Figure 1, we show the structure of the first baseline from VoicePrivacy [Tomashenko
et al., 2020]. In the first step, three sorts of feature are extracted from the audio:

• The fundamental frequency (or F0) extractor, which extracts the pitch content from a given
audio file (specifically, this baseline uses the YAAPT algorithm [Kasi and Zahorian, 2002])

• An Automatic Speech Recognition Acoustic Model (ASR AM), which works as a feature
extractor to generate a lower-dimensional representation (generally called Bottleneck or BN
features) of the content of the speech.

• Time Delay Neural Network (TDNN) x-vector extraction, which is trained to extract speaker
identity information.

After these features are extracted, the speech is then anonymized by sampling a random x-vector from
a large pool of candidate x-vectors, thus attempting to decouple the content of the speech from the
speaker identity. In the last step, the anonymized x-vector, BN features, and F0 are passed to a Speech
Synthesis Acoustic Model (SS AM) to generate a mel-filterbank, which itself is the decomposition of
an audio signal into seperate filter bins in the mel frequency scale. Namely for a given frequency f ,
the corresponding frequency in mel space is m = 2595 log10

(
1 + f

700

)
. This mel-filterbank is then

passed along with the anonymized x-vector to a Neural Source Filter (NSF) model, which converts
the mel-filterbank back into audio data.

Given this pipeline, the output audio can be assessed for both how well it reconstructs the semantic
meaning of the original speech, and also how well speaker identification models can de-anonymize
the anonymized speech.

3



Figure 1: Standard Pipeline for VoicePrivacy baseline B1, taken from Miao et al. [2022].

Figure 2: Overview of our proposed method. Notably, our method is a hybrid of Miao et al. [2022]
and Meyer et al. [2022], where we replace the x-vector pool anonymizer in Miao et al. [2022]’s setup
with a Generative Adversarial Network, inspied by Meyer et al. [2022].

Idea Summary. The current state of the art for voice anonymization is limited by a major tradeoff:
systems are either useful but langauge-specific, or language-agnostic but well below other langauge-
specific systems in performance. Our solution here is to marry the current state of the art models
from both language specific and agnostic camps. Namely, in the current SOTA for language-specific
(English) systems, Meyer et al. [2022] forgoes the pitch extraction component and replaces the
x-vector anonymization approach with a GAN-based reconstruction of the speaker embedding, where
to anonymize speakers samples are drawn from the embedding distribution with low cosine similarity.
In the SOTA for language-agnostic models, Miao et al. [2022] replace the ASR model with a
HuBERT-based soft content encoder (which is language-agnostic), and uses a HiFi-GAN neural
vocoder for audio reconstruction.

Given these two models, our solution is to use the HuBERT-based feature extractor and HiFi-GAN
from Miao et al. [2022] to preserve the language-agnosticity of the overall system, but borrowing the
GAN-based anonymization mechanism from Meyer et al. [2022] to leverage the superior performance.

Our second idea, which has not been tried to the best of our knowledge, is to bias the generative
anonymization DGM towards learning an anonymized embedding distribution, rather than the true
distribution. This is accomplished by training the generative model with a regularizer that incorpo-
rates whether each sample was later deanonymized, thus penalizing the anonymization module for
recreating the true embedding distribution too faithfully.

If our second idea does not bear fruit, our other possible solution is to replace the GAN in the
anonymization module with a Diffusion model [Song et al., 2020], in hopes that such a model may
train more stably and exhibit less of the vulnerabilities that GANs typically have.

Description. Formally, let the speaker identification extractor be denoted as some function S :
Rm → Rd that extracts a d-dimensional vector xsp (i.e. S(x) = xsp) for every audio input that
encapsulates the speaker’s identity. Thus, our DGM is tasked with learning the distribution p(xsp)
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of speaker identification embeddings. In our first experiment, we utilized a WGAN with Quadratic
Transport Cost as our DGM. We refer to Liu et al. [2019] for the formulation of the loss function for
the discriminator. For the Generator Gθ and discriminator Dϕ, the generator loss is

min
θ

L(θ) = − 1

n

∑
zi

Dϕ(Gθ(zi)), (1)

Where zi ∼ pg(zi) is sampled from a prior distribution. In this first case, to anonymize a user we
sample from Gθ until a given sample has cosine similarity with our original embedding < 0.7

In our second experiment, we propose to add a regularizer to the generator loss. Because we do not
care about how well we actually recreate the speaker identity distribution, we can bias our model to
perform worse (in a traditional sense) and sample from an anonymized distribution at inference.

In order to do this, we want to penalize the success of an automatic speaker verification (ASV)
model ASV . The current SOTA ASV systems [Tomashenko et al., 2020, 2022, Miao et al., 2022,
Meyer et al., 2022] utilize a speaker identity extractor S′ : Rm → Rd that is similar (or could be
identical) to S, and then compare the similarity of the embedded features through cosine similarity
(i.e. ASV (x1,x2) =

S′(x1)·S′(x2)
∥S′(x1)∥2∥S′(x2)∥2

). In practice, one of the inputs is treated as “enrollment"
data, where another recording of the user is used as a reference. Thus, for every generator, step, we
can use the modified loss:

min
θ

L(θ) = − 1

n

∑
zi

Dϕ(Gθ(zi)) + λ
∑
zi

Gθ(zi) · x′
sp,i

∥Gθ(zi)∥2∥x′
sp,i∥2

, (2)

where x′
sp,i is another extracted speaker identity vector with the same identity as the ith speaker, but

not present in the training set. In practice, for this held out dataset we In this way, we can directly
penalize the generator from generating embeddings that, while possibly close to p(xsp), may be too
close to the identity of the original speaker. In this scenario, instead of resampling for dissimilar
samples from the generator, we would be able to sample once, as the generator now represents an
anonymized embedding distribution.

Implementation. We are using PyTorch as our main implementation backend. Our models are
implemented based on the codebases of VoicePrivacy [Tomashenko et al., 2020, 2022], Miao et al.
[2022], SpeechBrain [Ravanelli et al., 2021], and the official WGAN-QC implementation [Liu et al.,
2019]. The VoicePrivacy codebase is used for baseline results, SpeechBrain is used for evaluation
metrics, and we build on Miao et al. [2022]’s codebase by incorporating the WGAN-QC into the
anonymization pipeline. Our architecture for the GAN anonymizer is inspired by Meyer et al.
[2022] and Touvron et al. [2022]: we use a reduced size ResMLP for both the Generator and the
Discriminator.

4 Experiments

Datasets and Tools. We focus on three major datasets for this present work, which are used to
match the evaluation laid out by Tomashenko et al. [2020] and Tomashenko et al. [2022], and the
training procedure from Miao et al. [2022]:

1. The LibriSpeech ASR Corpus1: Contains roughly 1,000 hours of audiobook read speech
in English. This dataset, split into development and test sets, is used for evaluation of all
metrics.

2. The LibriTTS dataset2: A multi-speaker English corpus of approximately 585 hours of
read English speech, derived from the LibriSpeech corpus. Like Miao et al. [2022], we use
this dataset as to train our GAN-based SA pipeline.

3. The CSTR VCTK Corpus3: Dataset containing data from 110 different speakers reading
out 400 sentences with varying accents in English (e.g. Scottish, Irish). This dataset, split
into development and test sets, is used for evaluation of all metrics.

1http://www.openslr.org/12/
2https://research.google/tools/datasets/libri-tts/
3https://datashare.ed.ac.uk/handle/10283/3443
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Figure 3: Miao et al. [2022] Anonymization pipeline. Our proposed work in Figure 2 is quite similar
for most of the pipeline, the main difference being that anonymization is performed using an x-vector
pool of existing speaker embeddings.

Baselines.

• Baseline 1 [Tomashenko et al., 2020, 2022]: This is the first baseline system outline in the
VoicePrivacy challenges, which is diagrammed in Figure 1. In this setting, anonymization
is performed by matching each speaker’s x-vector (i.e. speaker identity embedding) with
a pseudo-speaker x-vector that is sampled from a given pool of other extracted speaker
embeddings such that the pseudo-speaker x-vector is dissimilar to the original speaker. The
model then uses an SS AM to generate mel-spectrogram features which are input into an
NSF model to recover anonymized audio.

• Baseline 2 [Tomashenko et al., 2020, 2022]: Here, no training is involved, as anonymization
is purely performed using signal processing techniques. Namely, the McAdams coefficient
[McAdams, 1984, Patino et al., 2020] process is used to deterministically anonymize the
audio source data directly.

• Baseline 3 [Miao et al., 2022]: This is the SOTA language-agnostic system that forms the
basis of much of the design of our method (shown in Figure 3). Namely, the only difference
between our proposed method is that anonymization is performed using the standard pool of
x-vectors approach.

We include the first two baselines in order to situate the present work within the wider body of works
submitted to the VoicePrivacy challenges, as all submitted works are compared against these two
baselines. Additionally, we include the third baselines as it is a natural ablation over whether our
novel method improves upon the most similar architecture for SA or not.

Evaluation Metrics. We base our method on two main evaluation metrics:

• Equal Error Rate (EER): This metric quantifies how well the model does in terms of
speaker anonymization. Specifically, the EER is the rate at which the False Negative Rate
(Type 1 error) is equal to the False Positive Rate (Type 2 error) along the ROC curve. While
in typical biometric systems a low EER is desired, in SA an EER close to 50% is optimal, as
this means the verification system cannot determine the speaker identity.

• Word Error Rate (WER): This metric quantifies how well the model does in terms of
speech recognition. Namely, we have that:

WER =
(S +D + I)

N
(3)

Where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, and N is the number of words in the reference.
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Quantitative Results. We first note that we test our models in three different scenarios:

1. Unprotected (OO): No anonymization used, with the attacker (ASV) having access to the
true audio.

2. Ignorant attacker (OA): Audio is anonymized, attacker uses non-anonymized audio for
enrollment but is tested on the anonymized audio.

3. Lazy-informed (AA): Audio is anonymized, attacker has access to anonymized audio for
both enrollment and the testing.

Notably, AA represents a more realistic and higher-risk scenario than OA, as the attacker now knows
something about the anonymization process. To calculate EER metrics, each dataset comes with a set
of enrollment audio files, which we embed using a pretrained ECAPA-TDNN and average together
per user. These enrollment embeddings are then compared with each anonymized embedding to
calculate the EER. In Table 1, we display the EER values as the absolute difference from 50%, as
an EER of 50% denotes perfect anonymization. We see that our methods perform slightly worse
than the Baseline 1 in terms of anonymization, and note that in general our methods perform better
(relative to Baseline 1) in the AA scenario. We too see that there is not much benefit to including
the regularization penalty at all, which we surmise is due to instability in the GAN training process.
That being said, we do see that our method does consistently outperform the model from Miao et al.
[2022], showing that in terms of language-agnostic systems, our method is a strict improvement.

Table 1: |50−EER| results, where lower values are better. Namely, our models performs noticeably
worse than Baseline 1 in OA, but only slightly worse (and sometimes better) in AA setting. Addition-
ally, our method generally outperforms the model from Miao et al. [2022].

In Table 2, we see that both GAN and GANr outperform all the baselines across all datasets by
significant margins. This displays a key strength of our GAN-based anonymization method, as the
x-vector or signal processing based methods seem to suffer from introducing audio artifacts and
negatively effect intelligibility.

Table 2: Word Error Rate Results. Our method significantly out performs all baselines and achieves
SOTA values of speech recognition, thus showing that GAN-based speaker anonymization may be
quite good at preserving realistic audio quality and intelligibility.
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Table 3: Average Cosine Similarity of main models on training set (LibriTTS). Cosine Similarity is
close to 0 in both cases, thus alluding to the idea that low cosine similarity in the speaker embedding
space may not actually equate to good anonymization, and that penalizing the cosine similarity mostly
just makes training dynamics more difficult and is not needed.

GAN Average Cosine Similarity GANr Average Cosine Similarity

-0.01 0.03

Qualitative Results. We include the link to our webpage showcasing audio samples from our
anonymization methods and the first baseline here. Notably, we find that compared to the baseline,
our method preserves audio quality significantly better, as the baseline anonymization introduces
artifacts into the audio file that add a robotic quality to the output. Additionally, we find that GANr
introduces somewhat unrealistic pitch modulations as the audio evolves.

Ablative Studies. As we saw in Table 1, when we remove the regularizer term from the training
procedure (i.e. moving from GANr back to GAN), we see that our model does better in terms of
anonymization performance. In order to get a better idea as to why this behavior occurs, we look at
the average cosine similarity of each method during the training process. In Table 3, we see that the
cosine similarities are close to 0 in both regimes, even though it is only explicitly penalized in GANr.
Thus, we see that penalizing cosine similarity in the embedding space may not be the best way to
encourage the generative model to anonymize the data implicitly, as the cosine similarity is already
reasonably optimal (i.e. close to 0) without the penalization. Additionally, the subpar anonymization
performance of both methods with respect to baseline 1 calls in to question whether looking at cosine
similarity is even a useful way to think about anonymizing speaker data.

5 Conclusion and Discussion

As a whole, the current work presents the first step into designing speech anonymization systems that
balance the generalizability of language-agnostic approaches with the recent advances in generative
modeling to improve the anonymization process. Though anonymization performance was subpar, we
showed that our pipeline achieves remarkable performance in terms of improving speech recognition,
and achieves better performance than the best performing language-agnostic comparisons. The
high-level “language-agnostic + DGM anonymization" framework proposed provided is quite flexible,
thus allowing future work to explore other generative models as part of the anonymization pipeline.
If given more time, the authors would have moved towards utilizing a different class of generative
models (such as diffusion models) for the anonymization function, as instability and troubles with
GAN training limited the quantitative success of our method. The authors learned a considerable
amount about the space of speaker anonymization research, as well as all the benefits and drawbacks
that come with training GANs from scratch.
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