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INTRODUCTION
Multiplayer Online Battle Arena games (or MOBAs for
short), are subgenre of video games that combine ele-
ments of both action games and strategy games.MOBAs
comprise some of the most popular games within eS-
ports, with League of Legends (LoL) representing one
of the most popular video games worldwide. In LoL,
two teams of five players (each playing as some “cham-
pion"), fight to destroy the other teams’ base. Along the
way, players can buy items with in-match gold, earned
from completing objectives and killing enemy players,
in order to improve their champions’ stats and odds of
winning.
However, the task of choosing which items to buy

during a game is not a trivial problem, involving knowl-
edge of in-game mechanics, personal playstyle, the cur-
rent set of ally and enemy champions, AND each cham-
pion’s current set of items they bought. Thus, the task
at hand is whether we can effectively design a ma-
chine learning system to recommend which items
a user should buy sequentially given the game
state.

1 PART 1: DATASET
For this analysis, we turn to a dataset of 108,000 top-
ranked League of Legends Games in Korea from Kag-
gle1. For every match in the dataset, we have access to
which users played the match, which champions they
were playing, who won, and most importantly for our
purposes, a record of which items each player had by
the end of the match. As this dataset is not specifically
designed for recommendation-like tasks, extensive pre-
processing was done to make the dataset suitable for
our task.
We follow the setup fromAraujo et al. [2022], wherein

we do the following: for every match in the dataset, we

1https://www.kaggle.com/datasets/gyejr95/league-of-legendslol-
ranked-games-2020-ver1

extract a processed data point for each user on the win-
ning team (as wemake the assumption that the winning
team chooses items better) that coincides to that user’s
data and all ally and enemy data, with the correspond-
ing label representing the list of items bought during the
game. This essentially quintuples the size of the dataset
(with one data point per winning player per game). We
also filter the dataset for only matches played in season
13 of LoL, as significant game-mechanic changes, in-
cluding the exclusion or creation of entirely new items,
may occur season to see. Additional preprocessing was
used in order to extract a semi-ordered representation
of the item list (as the raw dataset only included the
items as represented by their placement in the user’s in-
ventory, labeled 1-6). Based on interviews with a small
pool of domain experts, we used the following heuristic
to induce an ordering to each user’s item set in a given
match:

(1) Consumable “potions" that give in-game health
back to the player are generally bought right at
the start of the game with the baseline gold.

(2) “Boots", a unique type of item that increases
player movement speed, is one of the first items
bought as the player accrues gold.

Thus, every user’s item set in every match was re-
order to include consumables, followed by boots, and
finally with all other remaining items. Wemake an addi-
tional simplifying assumption in that all item purchases
among players happen at the same time (i.e. when a
player buys their 3rd item, we assume all players in
the game have bought 2 items). We recognize this as a
inherent limitation to our work, and hope that in future
endeavors a dataset with temporally correct item logs
can be used.
We then split the data 80-20 for training and vali-

dation, wherein the processed data is split temporally
such that the validation set includes the most recent
match, and notably no match appears in both sets (to

https://www.kaggle.com/datasets/gyejr95/league-of-legendslol-ranked-games-2020-ver1
https://www.kaggle.com/datasets/gyejr95/league-of-legendslol-ranked-games-2020-ver1
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# Champions 148
# Items 244
# Players 99366

# Train/Test Split 331920 / 82980
Table 1: Processed Dataset details

avoid data leakage). The final processed data details are
shown in Table 1.

0 100 200 300 400 500 600
Number of games played

10 6

10 5

10 4

10 3

10 2

10 1

Figure 1: Distribution of Games Played per User

In particular interest for the project was incorpo-
rating player information into the recommendation
pipeline, as such personalization has not been a part of
recent works on MOBA-related recommendation tasks
[Araujo et al. 2022; Chen et al. 2018; Looi et al. 2018;
Villa et al. 2020]. In Figure 1, we show the distribution
of number of games played across all unique users in
the dataset. Notably, we see that roughly 66% of users
only played one game. While the sparsity of this feature
is somewhat to be expected (as ranked games are more
competitive than casual unranked games and are such
played less often for most users), this shows that there
is at least some amount of historical user data in the
other third of users that we may leverage in order to
improve item recommendation.

2 PART 2: PROBLEM SETUP
Here, we formalize the task of personalized sequential
recommendation for item choice in MOBAs, which is
heavily inspired by Araujo et al. [2022]. For a given

match, we have a set of users U = {u𝑘 }10𝑘=1, a set of
champions C = {c𝑘 }10𝑘=1 corresponding to each user, and
a list of items for each user’s championIc𝑘 = {i(c𝑘 )

𝑗
} | Ic𝑘 |
𝑗=1 .

As correct itemization in LoL not only depends upon a
player’s current item history, but also their playstyle,
their own champion choice, and the champion choice
and items bought by all allies and enemies, the task
can be phrased as estimating the following conditional
probability: at a given item slot 𝑗 , user u𝑘 , champion c𝑘 ,
item history i(c𝑘 )≤ 𝑗

, allied champions c𝑎 and items i(c
𝑎 )

≤ 𝑗
,

and enemy champions c𝑒 and items i(c
𝑒 )

≤ 𝑗
, we estimate

𝑝 (i(c𝑘 )
𝑗+1 | u𝑘 , c𝑘 , i(c𝑘 )≤ 𝑗

, c𝑎, i(c
𝑎 )

≤ 𝑗
, c𝑒 , i(c

𝑒 )
≤ 𝑗

) = 𝑝 (i(c𝑘 )
𝑗+1 | d𝑗 ),

(1)
where d𝑗 is the “description” of the game state when

buying the 𝑗 + 1th item. In words, we seek to use the
current game context to predict the next item a player
should buy. We can then assess the quality of our pre-
dictions using standard metrics such as Precision@k,
Recall@k, and Mean Reciprocal Rank (MRR) @k.
Given this setup, there are many possible choices for

how to structure extracting user, item, and champion
level feature representations from the data. As one sim-
ple baseline comparison, we draw from Araujo et al.
[2022] and propose POP. POP completely forgoes user
information or any sequential modeling and simply
implements a standard popularity-based heuristic, rec-
ommending themost popular set of items (in decreasing
relevance, implicitly assuming that more popular items
should be bought earlier) for each champion, where
popularity is determined by frequency in the training
set.
For our main model of interest, we base our model

off the architecture HT4Rec from Araujo et al. [2022]
(detailed more in Section 3). Notably, we do not use any
of the contextual stat-based information for items or
champions and instead model each item and champion
through latent representations. However, modeling of
the user representations is approached differently.
While we could take a latent factor-inspired approach

to modeling users, such an approach may not scale in
practice with the massive player base of LoL or update
quickly to account for fast changes in user playstyle.
Thus, we turn to a parametric feature extraction ap-
proach for the user representation. A key facet of user
representations that we wish to capture is the idea of
user skill: While certain item-champion configurations
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may be optimal for pro-players, such combinations may
lend themselves to playstyles that are more difficult for
beginning players or involve “active" items that require
their own learning curve to use effectively. Firstly, we
draw from standard league metrics2 and calculate the
Dominance Factor for each user 𝑘 in each match𝑚:

𝐷𝐹𝑘,𝑚 = 2𝐾𝑘,𝑚 +𝐴𝑘,𝑚 − 3𝐷𝑘,𝑚 (2)

Where𝐾𝑘,𝑚, 𝐴𝑘,𝑚, 𝐷𝑘,𝑚 are the number kills, assists, and
deaths respectively (an assist in this context refers to
when a player damages an enemy shortly before they
are killed but do not land the killing blow). We then ex-
tend this to account for historical trends by calculating
the moving average dominance factor 𝑎𝐷𝐹 for a user
over the past 𝑡 matches (i.e. for a player’s 𝑛th match,
𝑎𝐷𝐹𝑘,𝑛 = 1

𝑡

∑𝑛−𝑡
𝑚=𝑛−1 𝐷𝐹𝑘,𝑚), where 𝑡 is a hyperparame-

ter. In this sense, 𝑎𝐷𝐹 captures (for a given game) the
recent ability of the user. We then discretize the 𝑎𝐷𝐹
into the following final user input, which we denote
their “elo" e𝑘,𝑚 :

e𝑘,𝑚 = {𝑏 : Q𝑏−1 ≤ 𝑎𝐷𝐹𝑘,𝑚 ≤ Q𝑏} (3)

Where Q𝑏 is the 𝑏th quintile of all 𝐷𝐹𝑘,𝑚 across all
matches and users. In words, this quantity captures
what bracket of all players is the current player’s abil-
ity well situated in. While an obvious issue with this
method is that calculating each Q𝑏 across the entire
dataset inherently involves data leakage, we manually
verify that the quintiles are remarkably stable over
small (5% of the data) subsets of the original dataset
(see Figure 2), and thus use the global quintiles given
the stationarity. For users with no historical data, we
default set this value to the centermost quintile. This dis-
cretization allows us to extract temporal player-ability
information that is in the same format as champions
and items (that is, discrete tokens over a fixed vocabu-
lary).

3 PART 3: MODEL
We base our main model architecture off of [Araujo
et al. 2022]’s HT4Rec, which is a hierarchical trans-
former model that is the current state of the art for
sequential item recommendation in MOBAs. However,
HT4Rec noticeably did not include any user information
in its structure, which is where we proposeHT4Rec4U
(Hierarchical Transformer for Recommendation for

2https://leagueoflegends.fandom.com/wiki/Kill_to_Death_Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Percentile

5

0

5

10

Do
m

in
an

ce
 Fa

ct
or

Figure 2: Average Quintile across disjoint subsets
of dataset.

You), a personalized form of HT4Rec. We now describe
the model architecture, and omit match subscripts from
our notation for clarity.
For a given user in a given match, we first extract

a learned champion embedding c, a learned team em-
bedding t to differentiate between allies and enemies,
and a learned elo embedding e extracted from the user’s
recent game history as shown in the previous section.
At a given recommendation step 𝑗 , we compute item
embeddings i(u)

𝑗
, with our final input embeddings x𝑗

calculated as follows:

x𝑗 = (c + t + e) ⊕ i(u)
𝑗
, x𝑗 ∈ R𝑑 (4)

where ⊕ is the concatenation operation. We use X𝑗 to
denote the input embeddings for all players in the game.
After this step, our method proceeds identically to

HT4Rec. Namely, we use a Contextual Transformer
[Villa et al. 2020] module 𝐶𝑇 to calculate interactions
among the different players in the game, which out-
puts a contextual embeddings a(u)

𝑗
for a given user and

timestep. This embedding is then added to a learned
positional embedding p, and the resultant embedding is
fed into a Sequential Transformer [Kang and McAuley
2018] block 𝑆𝑇 to generate a latent embedding 𝜸 (u)

𝑗
.

Finally, this latent embedding is taken with a linear
recommendation layerW and a softmax activation 𝜎 ,

https://leagueoflegends.fandom.com/wiki/Kill_to_Death_Ratio
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which gives us the final output probability:

𝑝 (i(u)
𝑗+1 | d𝑗 ) = 𝜎 (W𝜸 (u)

𝑗
) (5)

𝜸 (u)
𝑗

= 𝑆𝑇 (a(u)
𝑗

+ p𝑗 ) (6)

a(u)
𝑗

= 𝐶𝑇 (X𝑗 ) (7)

In comparison to HT4Rec, our HT4Rec4U architec-
ture’s inclusion of the elo embedding seeks to use the
relative skill levels of the players in order to provide
better recommendation. Like Araujo et al. [2022], we
train our model to minimize the cross entropy loss with
the correct item predictions using the Adam optimizer
[Kingma and Ba 2014]. We note that one possible draw-
back of HT4Rec4U is the entanglement of the elo em-
bedding with the champion/team embedding (which
was done to not increase the dimensionality 𝑑 of the
embedding too much), which could negatively impact
performance. Additionally, in order to maximize results
given compute restrictions, we use the default model
specifications from Araujo et al. [2022] for HT4Rec4U.

4 PART 4: RELATED LITERATURE
The space of recommendation for MOBA games has
seen growing attention in the past few years [Araujo
et al. 2022; Chen et al. 2018; Looi et al. 2018; Villa et al.
2020], and the most common datasets used are the Sea-
son 7 US-based LoL matches3 and a dataset from an-
other popular MOBA, DotA 24. These datasets were
not used for the present work, as they do not include
any cross-match user information, thus making them
not suitable for personalized recommendation. Within
MOBA games, there are two main tasks with regards
to recommendation: item recommendation (the focus
of the present work), and champion recommendation.
Champion recommendation is concerned with help-

ing a player choose which champion to play at the start
of the match. During the champion selection phase,
each player on each team is allowed to ban a champion
from being played by anyone that match (which hap-
pens all at once), and is then proceeded by a draft selec-
tion phase, where teams alternate in picking champions
to play. There is a breadth of work that has looked at
learning optimal ways to play this minimax game, lever-
aging association rules [Hanke and Chaimowicz 2017],

3https://www.kaggle.com/datasets/paololol/league-of-legends-
ranked-matches
4https://www.kaggle.com/datasets/devinanzelmo/dota-2-matches

classical ML algorithms [Porokhnenko et al. 2019], deep-
learning approaches [Chen et al. 2021; Gourdeau and
Archambault 2020], andMonte-Carlo Tree Search [Chen
et al. 2021, 2018] methods.
Within item recommendation, the majority of works

are not concerned with the sequential and/or multi-
agent aspect of the game itself. Namely, Looi et al.
[2018] is primarily concerned with single item rec-
ommendation only given the player’s character and
currently bought. Araujo et al. [2019] and Villa et al.
[2020] both focus on context-aware (i.e. concerning
other players) recommendation of the full item set. We
note Araujo et al. [2022] as our main inspiration, as
they are the only other work (to our knowledge) that
tackles both the sequential and context-aware aspects
of item recommendation in MOBAs. Here, they use the
aforementioned Dota 2 dataset, which contains a more
accurate log of item purchases.

5 PART 5: RESULTS &
CONCLUSION

We compare our three models (POP, HT4Rec, and
HT4Rec4U) on their performance on the validation sub-
set of the original data. For HT4Rec and HT4Rec4U (as
no training is required for POP), we train for 50 epochs
with a learning rate 𝜂 = 2 × 10−4, 𝛽1 = 0.9, 𝛽2 = 0.98,
and weight decay = 1×10−4. For the model architecture,
we use a single layer for the contextual and sequential
transformer encoders, a latent dimensionality 𝑑 = 512,
and a max sequence length of 6 (as only 6 items can be
held at once).

Metric POP HT4Rec HT4Rec4U

Precision@1 0.1037 0.1968 0.3122
Recall@1 0.1037 0.1968 0.3122
MRR@1 0.1037 0.1968 0.3122

Precision@3 0.0367 0.1312 0.1841
Recall@3 0.1100 0.3937 0.5522
MRR@3 0.1068 0.2817 0.4167

Precision@6 0.0194 0.0921 0.1188
Recall@6 0.1164 0.5528 0.7130
MRR@6 0.1078 0.3153 0.4508

Table 2: Quantitative Results on Validation Set

https://www.kaggle.com/datasets/paololol/league-of-legends-ranked-matches
https://www.kaggle.com/datasets/paololol/league-of-legends-ranked-matches
https://www.kaggle.com/datasets/devinanzelmo/dota-2-matches
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In Table 2, we can see that our model, HT4Rec4U,
performs best across all metrics at different values of 𝑘 .
While the subpar performance of POP is not surprising
(as it breaks the sequential nature of the problem), the
boost over HT4Rec gives evidence that leveraging even
simplified personalized information can drastically im-
prove the quality of the recommendations. We do note
that in general, the metric values are quite low across
all tested models, which opens the door for further
research on more well-formed datasets with perhaps
more involved personalization modeling.
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Figure 3: AverageAttentionweights for Sequential
Encoder

In order to get a sense of what our model actually
learned, we visualize the attention weights for the se-
quential transformer encoder (as we a priori know each
sequence has at most 6 items and thus 5 predictions),
averaged across all data in the validation set. In Figure 3,
we can see that our model not only attends to all of the
past time steps when predicting the next recommended
item. This helps us build the intuition that our model
has learnt reasonably specific temporal dependencies
and uses the entire set of currently bought items to
influence the next item.
As a whole, our present project represents the first

work to recommend items in MOBA games through
a sequential, context-aware, and personalized model-
ing approach. Given the success of incorporating user
skill-based information into the recommendation, we
hope that this work inspires further research into fine-
grained, user-specific item recommendation in MOBA

games, and more broadly bringing user skill informa-
tion into the space of recommendation for games.
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